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Printed Circuit Transmission-Line
Characteristic Impedance by
Transverse Modal Analysis

HUNG-YUET YEE, SENIOR MEMBER, IEEE, AND KUANG WU, MEMBER, IEEE

Abstract —Dispersion characteristics of printed circuit transmission lines
such as finlines, shielded microstrips, slotlines, suspended striplines, cou-
pled slotlines, and coupled striplines computed by the transverse modal
analysis were reported in a previous paper [1]. Application of the trans-
verse modal analysis to compute the characteristic impedances of these
printed circuit transmission lines is illustrated in this paper. Favorable
comparison with various published data demonstrates the outstanding
accuracy achieved by this technique. Combining the characteristic imped-
ance computation with the dispersion results, the transverse modal analysis
can be employed for solving various problems in printed circuit transmis-
sion lines.

I. INTRODUCTION

PPLICATION of the transverse modal analysis

(TMA) to compute the dispersion characteristics of
printed circuit transmission lines such as finlines, shielded
microstrips, slotlines, suspended striplines, and two-
coupled striplines and slotlines was reported in a previous
paper [1]. Favorable comparison with results computed by
various numerical techniques applied to the same problems
verifies the accuracy of the transverse modal analysis solu-
tions.

In addition to the dispersion relationship, the character-
istic impedance of a transmission line is another important
parameter for microwave designers. Cohn [2] applied the
transverse analysis to compute the slot line impedance by
first computing the gap capacitance. Sorrentino et al. [3]
extended the solution to coplanar coupled slot lines with
dielectric substrates. In this paper, the transverse modal
analysis is generalized to include the computation of the
characteristic impedances of finlines, microstrips, and
broadside-coupled striplines. The characteristic imped-
ances of similar printed circuit transmission-line systems
can be computed in the same manner. Excellent agreement
with published results further confirms that this technique
is indeed a viable tool for many microwave engineering
problems.

Applying the transverse modal analysis as outlined in [1]
to a transmission-line cavity, the cavity field distribution
and resonant frequency can be computed. The modal
series representations are good approximations of the
transmission-line fields in various regions if a sufficient
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number of modes are included. At resonant frequency, the
cavity field can be resolved into two components, one
representing the transmission-line forward-propagating
field and the other representing the backward-propagating
field. Either forward or backward propagation can be used
to compute the power associated with the transmission-line
field by integrating the suitable Poynting vector over the
cross section of the transmission-line system. Using this
computed power with suitable impedance definitions, the
characteristic impedances of various transmission lines can
be computed with sufficient accuracy for most engineering
applications.

The convergent phenomena in the computation of the
characteristic impedance are similar to those for the dis-
persion relationship. Using the ratio of maximum wave-
guide mode index to maximum slot aperture or the strip-
line current mode index, equal to the ratio of waveguide
width to aperture or stripline width, correct convergent
results are obtained. Detailed discussions on this type of
relative convergence can be found in [4]-[6].

II. FORMULATION

Formulation of characteristic impedances for shielded
slotlines (or bilateral finlines) and shielded microstrips (or
broadside-coupled striplines) will be considered in detail to
illustrate this technique. Using these two guideline exam-
ples, characteristic impedances of various printed circuit
transmission-line systems can be computed by transverse
modal analysis.

With reference to the configuration in Fig. 1 and using
the transverse modal analysis method as described in [1],
we consider that the shielded slot line or microstrip cavity
consists of two rectangular waveguide sections, where the
propagation is along the z direction. These two waveguide
sections are joined by a window or a strip conductor at
z=g and are terminated by an electric wall at z =/ and
by an electric or magnetic wall at z = 0, depending on the
required geometry. The transverse field components in the
two rectangular waveguide sections are expressed in terms
of the rectangular waveguide modal functions as follows.

For region 1 (g>z>0)

E=Y 48,50 (8,2)| (1a)
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Fig. 1. Schematic diagram of two-dielectric-layer cavity. (a) Finline. (b)

Shielded microstrip.

COS(B,,Z)]-

Hl = JZAnYni X Qn[ —_ Sin (lb)
n

For region 2 (A>z> g)

E,=Y B®,sin|[B.(h—2z)] (2a)

H,=jYBY,2X®,cos[B(h=2)]  (2b)
where the upper and lower functions are applied to the
electric and magnetic wall at z =0, respectively; n is the
compound index, which represents two index numbers
plus an index indicating the TE or TM mode; and ®, is
the normalized waveguide modal function. The wave ad-
mittance Y, is related to the z propagation constant 3, by
Y, =R, /wp for TE modes and Y, = we /B, for TM modes,
where w i$ the angular frequency and p and e are the
permeability and permittivity, respectively. Conveniently
assuming that the y variation index is equal to one, the z
propagation constants are given by

B, 5| € 2 2\
ol 1 e R 0 70 NG
where €, and ¢, are the relative dielectric constants in
regions 1 and 2, respectively.

Following the same procedures as employed in the dis-
persion computations, the electric field in the finline siot

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 11, NOVEMBER 1986

aperture is assumed to be
Ea = Z ngq (4)
q
and the surface current density on the microstrip conduc-
tor is represented by

J=jXCp, (5)
q

where the aperture field modal function §, and strip
current modal function v, are defined in [1] and will not
be repeated here.

Enforcing the boundary conditions on the cavity inter-
face and using the Galerkin’s method, the following matrix
equation is derived from the above equations:

[M][C]=0 (6)

where

G, for finline

M,, = Xn: an%n{ 1/G, for microstrip

G, = Yot B (h- 9] +7,| (8,9

an=f[?:}~®nd5.

The surface integration of the above integral is integrated
over the slot aperture for a finline and over the strip
conductor for a microstrip. In order to obtain a set of
nontrivial coefficients, the determinant of the square ma-
trix given by (6) must vanish. This requirement determines
the cavity resonant frequency and, hence, the dispersion
characteristics. Substituting the computed resonant
frequency into (6), the slot aperture field or the strip
current expansion coefficients and, hence, the cavity field
can be computed.

The rectangular waveguide vectorial modal functions for
TE and TM modes are given by Marcuvitz [7] as follows:

_cos cos for TE mode
¥u = sin (nmx/a) sin (7y/b) for TM mode
IxXVvY, for TE mode
Q"_(N"/W)<V\I'n for TM mode
N,= (24, /ab)*(s/k.)
/1 if n=0
A= {2 itn+0

k./m=|(nsa)*+1/b)]""”

where TE and TM refer to the transverse electric and
transverse magnetic fields with respect to the z axis, re-
spectively. For characteristic impedance computation, the
power propagating along the y direction is required, and,
hence, the z components of the electric and magnetic
fields. To be consistent with (1), the z components of the
cavity field in region 1 may be written as

H,= LA, (ko/mY (N, /jon)8,[ 52 (8,2)]  (7a)
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for TE modes, and as } 1 b
E,= - L a,(k./m)(N,/om) %, _5n(8,2)] () '
n ln /I— - _/— - - 7
/ / ’
for TM modes. Equations (7a) and (7b) are applicable to I3 £ /J'—‘ —~— // y
region 2, provided that A4 is replaced by B, and the ion,2 l / / i
functions inside the square brackets are replaced by ¢ £ /‘ /. ./../ L
cos[ B,(h — z)} and sin{ 8, (h — z)], respectively. / 4 Redion 3 d
To compute the y-propagating transmission-line power, o
the y dependents in (1) and (7) are resolved into two / Region 1
terms: one for positive y propagation and the other for | a *X
negative y propagation. Either positive or negative y-prop- \ €= "'ll Al
agating field can be chosen to compute the transmission- ¢
line power and the characteristic impedance. Attention @
must be given to the transmission-line power computation
which requires the cross-coupled TE and TM modal fields. ” U,,\,,'0
The power associated with the transmission-line mode !
can be computed by integrating the Poynting vector /:- -7 77
/
p=ExH"/2 N A A
over the transmission-line cross section on any plane not- (&ionfz v Z / //
mal to the y axis. The resultant modal power in region 1 7r- /’/' - ')’ ST -V Y
(having the same modal index) with magnetic wall at y =0 g A A Z Region3
is given by /
P, = [7/(8aub)]{ID,,[*/b+ nDxD,,/a) 0 4 e
0o : rX
e —sed a
+8,(1D,,12/b) (k/8,)’ [ 4 oL
(b)

(8a)
(8b)

~(nD3D,,/a)(B2/B,)] 0. )
Q. = (g/2)Isec? (B,g) +tan(B,g)/(8,2)!

D,=YCW,, i=lor2 (8¢c)
q
5 = {o if n0
" 1 ifn=0

where the subscript i =1 or 2 indicates the quantity for the
TE or TM mode solution obtained from the matrix equa-
tion (6) and * indicates the complex conjugate quantity.
For the electric wall at y =0, (8) is applicable provided
that (8b) is replaced by

Q. = (g/2)lesc®(B,g) —cot(B,8)/(B,)l  (9)

The modal power in region 2, P,, can be expressed by (8)
provided that B, is replaced by B,, €, by ¢, and (9)
replaced by

0F =[(h~g)/2lesc? [ B;(h —g)]
—cot[B;(h=2)]/[Bi(h=g)]l.  (10)
We are now ready to compute the total power associated

with the transmission-line mode by summing all the modal
powers in both regions 1 and 2

P=Y.(P,+Py). (11)
n

Using the total power obtained by (11), the characteristic

impedances based on power definition can be computed as

shown in the next section.

Fig. 2. Schematic diagram of three-dielectric-layer cavity. (a) Shielded
two slotlines. (b) Shielded two striplines.

IIL

The characteristic impedance of a conventional two-
conductor transmission line is defined by

Z,=2P/|I?

CHARACTERISTIC IMPEDANCES

(12)

where P is the total power transferred across the reference
transverse plane and [ is the total longitudinal current
carried by one conductor. This definition is easily applied
to microstrips with no ambiguity. This definition is also
used for a two-coupled stripline, as shown in Fig. 2(b), if
d = d’. On the other hand, the characteristic impedance of
a conventional slotline may be defined as

Z.=\V’/(2P) (13)

where ¥V is the voltage across the slot. This definition is
also used for the bilateral finline, as shown in Fig. 2(a),
with d=d’ and c=¢".

To compute the microstrip current and the finline volt-
age, the modal expressions must be resolved into two
terms in the same manner as in the power computation.
After the modal coefficients of the aperture field and the
strip current are determined for a given resonant frequency,
the voltage across the slot and the total longitudinal strip
current can be easily computed by the integration of (4)
and (5) across the slot aperture and the strip conductor, as
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given by
c+d
v=[""E,zdx

c+d n
1=fc T pdx.

Here, the subscript ¢ indicates the aperture electric field
and the strip current density associated with the transmis-
sion line. The characteristic impedances of the microstrip
and the finline can be computed by substituting these
results into (12) and (13).

IV. NUMERICAL RESULTS

The accuracy of the numerical solution computed by the
transverse modal analysis depends on the way in which the
infinite series representations of the fields in the cavity are
truncated. Using the ratio of maximum waveguide mode
index to maximum slot aperture or the stripline current
mode index, which is equal to the ratio of waveguide width
to aperture or stripline width, correct convergent results
are obtained. This relative convergence is identical to that
discussed in [4]-[6] and is verified by two examples given
in this section.

To illustrate the accuracy of the characteristic imped-
ance computed by TMA, solutions of bilateral finlines,
shielded microstrip, rectangular coaxial lines, and two
broadside-coupled striplines are considered here. The rect-
angular coaxial line is a special case of the shielded micro-
strip where the relative dielectric constants are identical in
both regions. '

The schematic diagram of the bilateral finline under
consideration is shown in Fig. 1(a) with magnetic wall at
z = 0. The parameters are given as follows:

Waveguide dimensions 0.28 by 0.14 in,

Dielectric slab thickness = 0.00492 in,

relative dielectric constant
=130,

0.0197 in.

Fig. 3 shows the computed characteristic impedances of
the finline with 0.5-mm slot width using ratios of maxi-
mum slot mode index to waveguide mode index equal to
1/8 and 1/4 at frequencies equal to 29.3 and 30.0 GHz,
respectively. The ratio of slot width to waveguide width is
equal to 1:7.11. Observe that by using a modal ratio equal
to 1/8, the numerical result converges rapidly to 403 Q,
which compares favorably with that computed by Schmidt
and Itoh using the spectral domain (SD) technique [8].
However, the computed impedance approaches the wrong
value when the modal ratio is equal to 1/4, which is
greater than the suitable ratio.

Compared in Fig. 4 are results computed by the trans-
verse modal analysis and those presented by Schmidt and
Itoh. Excellent agreement between these two sets of data is
observed over a broad range of frequencies.

Characteristic impedances of microstrips have been in-
vestigated by many authors [9], [10]. Practical applications
require shielded microstrips to avoid the leakage of electro-

Slot width
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Fig. 3. Finline characteristic impedance by TMA using mode ratio =
1/8 and 1/4. Waveguide dimensions; 0.28 in by 0.14 in; slot width,
0.0197 in; dielectric slab thickness, 0.00492 in; dielectric constant, 3.0.

magnetic power. The TMA technique is highly suitable for
these applications. It is well known that the field is highly
concentrated underneath the strip conductor in the pres-
ence of a dielectric substrate. The shielded microstrip
solution is a good approximation to the open version if the
walls are sufficiently far away from the strip conductor.

Consider a microstrip where the waveguide dimensions
are 2.0 by 0.6 in, the strip width is 0.2 in, the dielectric slab
thickness is 0.1 in, and the relative dielectric constant is
9.6. Depicted in Fig. 5 are the TMA characteristic imped-
ances computed by mode ratios equal 1,/10 and 1/5. The
solution with the mode ratio equal to 1/10 (the suitable
ratio) converges to 33.1 £, which compares favorably with
the 32.8 & computed by Farrar and Adams [6] using the
potential theory (PT) method for covered microstrips
without two side walls.

Listed in Table I are microstrip characteristic imped-
ances computed by the TMA and PT methods. The solu-
tion obtained by the PT technique is computed in the
absence of two side walls. Compared in Table II are
microstrip characteristic impedances computed by TMA,
the moment method (MM), and conformal mapping (CM)
[11]. No shielding structure is used for the MM and CM
computed results. Observe that the TMA solution com-
pares very well with results computed by various tech-
niques. In the narrow-strip case, where d /g = 0.1, the field
distribution spreads far into the waveguide region and the
computed characteristic impedance is smaller than in the
unshiielded microstrip. In general, smaller side-wall or
top-wall spacing results in a smaller characteristic imped-
ance.

It is interesting to observe that the microstrip character-
istic impedances computed by TMA vary very slightly with
frequency in the low-frequency domain, where the quasi-
TEM solution is valid.

A rectangular coaxial line is a special case of a shielded
microstrip where the rectangular waveguide is filled with a
uniform dielectric medium. The numerical data shown in
Fig. 6 were computed for symmetrical rectangular coaxial
lines only, while the equations derived in the previous
section are applicable to coaxial lines with offset inner
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Fig. 5. Shielded microstrip characteristic impedance by TMA using

mode ratio=1/10 and 1/5. Waveguide dimensions, 2.0 in by 0.6 in;
strip width, 0.2 in; dielectric slab thickness, 0.1 in; dielectric constant
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COMPARISON OF MICROST.

TABLEI
RIP CHARACTERISTIC IMPEDANCES FOR

h /g =6 AND DIELECTRIC CONSTANT = 9.6

a/d d/g TMA PT

10.0 0.4 69.7 70.9

10.0 0.8 53.8 53.9

6.0 1.0 47.9 48.5

10.0 1.0 48.4 48.5

10.0 2.0 _33.1 32.8
TABLETI

COMPARISON OF MICROSTRIP CHARACTERISTIC IMPEDANCES FOR

h /g =10.0 AND DIELECTRIC CONSTANT = 6.0

a/d d/g THA MM CM
10.0 0.1 102.92 135.46 134,35
40.0 0.1 128.96 135.46 134.35
10.0 0.4 86.30 91.17 89.91
10.0 1.0 60.49 62.71 60.97
10.0 4.0 25.99 27.30 26.03

Fig. 6. Comparison of rectangular coaxial line characteristic imped-
ances by SIE (solid curves) and TMA (triangular dots). Z_: characteris-
tic impedance; Z,: intrinsic impedance. ‘

conductors. Also shown in Fig. 6 are results computed by
Tippet and Chang [11] using the singular integral equation
(SIE) technique. Excellent agreement is observed for vari-
ous combinations of waveguide dimensions and strip con-
ductors, as indicated in the figure. The transmission-line
guided wavelength computed by the TMA method is equal
to the exact transmission-line solution for any combination
of geometric parameters.

Following the same techniques as outlined in {1] and in
the previous section, characteristic impedances of the
shielded two-coupled sirips shown in Fig. 2 and of similar
printed circuit transmission lines can be analyzed by TMA.
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Fig. 8. Comparison of characteristic impedances of two broadsidecoupled strips by Cohn [7] (—) and TMA (----- ) for

h/d=0.5.

For the special case of two identical broadside-coupled
strips, the odd- and even-mode characteristic impedances
can be computed by the microstrip solution with the
electric and magnetic walls at z=0, respectively. The
TMA results are shown in Figs. 7 and 8.

Also shown in Figs. 7 and 8 are results computed by
Cohn [12] using the conformal mapping technique. In
order to compare the TMA solutions with those computed
by Cohn, the side-wall spacing is chosen to be ten times
the stripline width. For all cases shown in Figs. 7 and 8,
the field is negligible at the side wall locations even without

the side walls. Excellent agreement is observed over a wide
range of parameters. This comparison and that in Figs. 4
and 6 show that excellent accuracy can be achieved by
TMA for printed circuit transmission lines.

V. CONCLUSIONS

Characteristic impedances of printed circuit transmis-
sion lines computed by the transverse modal analysis tech-
nique are illustrated in this paper. Equations are derived
only for the finlines and shielded microstrips. It is easy to
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extend the applications to other printed circuit transmis-
sion-line configurations. Favorable comparison with re-
sults computed by various techniques, such as spectral
domain, moment method, conformal mapping, and poten-
tial method, demonstrates the accuracy achievable by
TMA. Combined with the dispersion formulation dis-
cussed in [1], the transverse modal analysis is a viable tool
for the design of printed circuit transmission lines Where
both the dispersion and characteristic impedance are im-
portant parameters.

The advantages of the TMA technique are its applica-
tion to the high-frequency domain, where higher order
modes may propagate, and its simple formulation and
computation for similar transmission-line configurations.
Although only a thin-conductor formuilation is derived in
this paper, extension to include the effects of finite-thick-
ness conductors can be obtained with no difficulty.
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